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Abstract. For the self-avoiding walk problem, the coefficients of the chain generating 
function and of the generating function for the sum of square end-to-end distances have 
been extended to 20 terms for the triangular lattice, to 27 terms for the diamond lattice, 
to 21 terms for the simple cubic lattice and to 16 terms for the BCC lattice. Precise estimates 
of the critical points are obtained, and for the exponents we find that y = 1.161 *0.002 and 
v = 0.592 i 0.003 encompasses all the three-dimensional lattice data. 

1. Introduction 

In an earlier paper (Guttmann 1987a, hereafter referred to as I )  we presented extended 
series for both the square lattice and simple cubic (sc) lattice self-avoiding walk chain 
generating function C( U )  and mean square end-to-end distance generating function 
R ( U), where 

C( U )  = cnun R ( u )  = C r ; u n  

where c, is the number of n-step self-avoiding random walks (SAW) with fixed origin 
and r’, is the sum of the squares of the end-to-end distance of all c, n-step SAW. 

In this paper we report further extensions of the sc lattice data by an additional 
term, extension of the triangular lattice walk data by one term, extension of the BCC 

lattice data by three terms and extension of the diamond lattice data by five terms. 
The computational aspects of some of these calculations are unusually interesting. 

The extension of the simple cubic data, which was computationally the most demanding, 
was performed on a two-pipe Cyber 205. The diamond lattice calculations were 
performed on a Cyber 990, while the triangular and BCC lattice calculations were 
performed on a dedicated Micro Vax 11. (By the term ‘dedicated’ we mean that the 
machine did nothing else but these calculations for 168 h per week for about two 
months.) 

The algorithm used was the dimerisation algorithm of Torrie and Whittington 
(1975), appropriately modified to take advantage of the vectorisation capabilities of 
the two Cyber machines. 

The new series were analysed using the analysis protocol developed in I,  based on 
the method of diff erential approximants. The numerical results for the two-dimensional 
triangular lattice walk exponent y are in agreement with Nienhuis’ (1982, 1984) exact 
exponent estimates, while the critical point estimate has been slightly refined beyond 
that given in I .  For the three-dimensional lattices, we find consistent exponent estimates 
from lattice to lattice, which are in agreement with those obtained from renormalisation 
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group theory and Monte Carlo analysis. The critical point estimates we believe to be 
the most precise that have been obtained to date. 

2. Generation of series 

Some manual optimisation was necessary to maximise the performance of the code 
on the Cyber 205. In pure scalar mode the program ran at about 14 times the speed 
of a Vax 11/780. Improved performance was obtained by switching from 64-bit to 
32-bit precision (the latter being, in fact, the same precision as the Vax), by hand-coding 
Cyber 205 vector statements and by assembly coding of ‘linked triad’ operations. An 
example of a linked triad is a construction of the form C = A+ kB, where A, B and 
C are vectors and k is scalar. On a sequential machine this would probably be evaluated 
as a sequence of pairs of operations, each pair consisting of a scalar multiplication 
followed by a scalar addition, with the sequence controlled by a do-loop. Without 
linked triads (or ‘chaining’) a pipelined vector machine would evaluate it as a pipelined 
sequence (vector) of multiplications followed by a pipelined sequence of additions. 
Computed as a linked triad, the output of the multiplication pipe is fed directly into 
the addition pipe with no storage of intermediate results. Thus, for the two-pipe Cyber 
205, the time for multiplication of an n-component 32-bit vector by a 32-bit scalar or 
for addition of two n-component 32-bit vectors is T(n) = 51 + n/4 cycles, while that 
for a linked triad of the above form is 61 + n/4 cycles. Hence, for large vectors a time 
saving approaching 50% is attainable. The denominator of 4 in these expressions is 
the product of a factor of 2 due to the 205 having two vector pipes and another factor 
of 2 due to using 32-bit precision. 

Though automatic vectorisation is available, the existence of a linked triad is 
frequently missed by the compiler, particularly if it is not in an obvious canonical 
form. Investigation of the assembly code identified such occurrences, and explicit 
assembly coding was then performed on triadic operations. A fuller discussion of this 
problem is given by Ramamurthy (1987). 

In this way an overall speed-up from the scalar version of a factor of nearly 8 was 
obtained, with the result that the program ran at 100 times the speed of a Vax 11/780. 
Even so, around 40 h of CPU time was required to obtain the series to 21 terms. The 
series to 20 terms was given in I .  The additional coefficients are c2 ,  = 
235 710 090 502 1 5 8 ~ ”  and r:,  = 9679 153 967 272 7 3 4 ~ ” .  

The diamond lattice series were generated on a Cyber 990. This is a high-speed 
scalar machine, capable of some degree of vectorisation. Rewriting the FORTRAN code, 
but not resorting to assembly language programming, gave a speed of about 25 times 
that of a Vax 11/780. In this way the series for both the number of walks and the sum 
of their mean square end-to-end lengths were obtained to 27 terms. This gives five 
new coefficients beyond those given by Ishinabe (1989). These are also given in table 1 .  

For the triangular lattice, we found the coefficient of U’’ in the chain generating 
function to be c2,, = 7812 439 620 678. The corresponding mean square end-to-end 
distance coefficient was not calculated. 

For the BCC lattice both the number of walks and the sum of their mean square 
end-to-end lengths were obtained to 16 terms. This gives three new coefficients beyond 
those given by Ishinabe (1989). These are also given in table 1. 
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Table I .  Coefficients of the chain generating function C ( u )  and the sum of the mean 
square distance generating function R (  t') for the diamond and body-centred cubic lattice. 

Diamond lattice Body-centred cubic lattice 

C(V) R ( v ) / 4  C(u)  R ( u )  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

1 
4 

12 
36 

108 
324 
948 

2 796 
8 196 

24 060 
70 188 

205 284 
597 996 

1 744 548 
5 073 900 

14 774 652 
42 922 452 

124814484 
362 267 652 

1052271732 
3051 900516 
8857050204 

25671988020 
74449697484 

215677847460 
625096195404 

1810062340812 
5243388472212 

1 
8 

41 
176 
689 

2 552 
9 083 

31 408 
106 239 
353 304 

1158617 
3 756 384 

12 061 945 
38 418 328 

121 504271 
381 942 224 

1194166357 
3715993832 

11514366573 
35543506848 

109 342 447 895 
335329803992 

1025473390579 
3 127923450864 
9518 194702643 

28900497 267032 
87574269583237 

1 
8 3 

56 48 
392 53 1 

2 648 5 088 
17 960 44 751 

120 056 373 404 
804 824 2 999 985 

23 457 672 
179 561 859 

236 291 096 1352017596 
1568049560 10042445889 

10368669992 73771019064 
68 626 647 608 536 817 918 837 

453032542040 3875387231484 
2992783648424 27783 517769223 

19731335857592 197998094612568 

5 351 720 
35 652 680 

3. Analysis of series 

We have used the same analysis protocol based on differential approximants described 
in I and discussed further in Guttmann (1989). We will not repeat the details here, 
but just give the results of our  analysis. 

For the triangular lattice data, the additional coefficient gives 10 non-defective 
first-order approximants ( K  = 1) and 7 second-order approximants ( K  = 2) which 
combine together to give the estimates 

y = 1.343 41 * 0.000 49 
U, = 0.240 9173 * 0.000 0016 
y = 1.3452 * 0.0077 
U, = 0.240 921 * 0.000 016 

} K = l  

K =2. I 
These results are entirely consistent with the exact value y = 2 = 1.343 75. Imposing 
this value, linear regression among the approximants that gave rise to the above values 
gives 

v,=0.2409193 K = l  
U, = 0.240 918 K =2. 
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These are consistent with, but slightly more precise than, our earlier estimate based 
on first-order differential approximants of 0.240 920 * 0.000 003. 

For the sc lattice data, the additional coefficient gives 11 non-defective first-order 
approximants ( K  = 1) and 8 second-order approximants ( K  = 2) which combine 
together to give the estimates 

} K = l  

K =2 .  

y =  1.1610*0.0008 
U, = 0.213 496 f 0.000 003 

y = 1.161 1 * 0.0010 
U, = 0.213 496 f 0.000 004 1 

These results are entirely consistent with, but apparently more precise than, our earlier 
estimates y = 1.1613*0.0021 and U,= 0.213 497*0.000010. 

We have also analysed the generating function for ( R ; )  = r : / c , ,  biased at 1.0. The 
estimate of l + 2 v  based on all 21 terms was 2.1890*0.0041. (This adds an  extra row 
to table 8 of I . )  This additional entry does not alter our previous estimate of U =  

0.592f0.004, though it does suggest that our upper bound is very conservative. We 
remark that an  additional analysis biasing the series both at +1.0 and  -1.0, which is 
appropriate for loose-packed lattices, does not appear to improve the quality of the 
approximants. Thus the ( R ; )  series continue to display poorer convergence than the 
chain generating function series, presumably due to the more complicated confluent 
singularity structure, as explained in I. 

For the diamond lattice data, we show the results of the analysis of the chain 
generating function in table 2. As explained in I ,  each row gives the mean and twice 
the standard deviation of the critical point and  critical exponent estimates of the L 
approximants obtained from a K th-order inhomogeneous differential approximant 
using n series coefficients, where L, K and n are given in table 2. 

These data may be combined, as in I, and  yield the overall estimates 

y =  1.1600*0.0036 
U, = 0.347 34 f 0.000 02 

y = 1.1627 * 0.0021 
U, = 0.347 37 * 0.000 01 

} K = l  

K = 2 ,  1 
In table 3 we give the results of the corresponding analysis of the ( R i )  series, biased 
at  1.0. Combining these results gives 1 +2v  = 2.184f 0.006, where the general downward 
trend of the estimates has been taken into account as for the sc lattice, so that 
v = 0.592 * 0.003. 

For the BCC data our series are still comparatively short. For the corresponding 
Ising susceptibility series we have five further terms (Nickel 1982), and as our  analysis 
(Guttmann 1987b) showed, these five extra terms moved the estimate of the exponent 
y downward by about 0.001. Repetition of the analysis performed on the diamond 
lattice data above gave the overall results 

y =  1.1626*0.0011 
v,=O.153 136*0.000004 

y = 1.1631 f0.0012 
u,=0.153 138*0.000004 

} K = l  

K = 2 .  
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Table 2. Diamond lattice C ( c i  series. Summary of critical point and exponent estimates 
from first- and second-order differential approximants. 

K = l  

n Critical point Critical exponent 1 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
- 

0.347 5135 
0.347 3996 
0.347 4040 
0.312 7142 
0.308 7767 
0.284 1819 
0.315 7481 
0.347 3337 
0.347 3499 
0.347 3408 
0.347 3197 
0.347 3454 

0.000 3068 
0.000 3015 
0.000 2634 
0.219 7531 
0.231 5826 
0.281 0066 
0.209 4436 
0.000 0732 
0.000 0952 
0,000 0858 
0.000 2103 
0.000 0242 

-1.176 8275 
- 1 .I66 902 1 
-1.166 3807 
-1.055 6630 
-1.033 5407 
-0.947 591 1 
- 1.05 1 8605 
-1.157 4595 
-1,159 5264 
-1.158 4533 
-1.154 7071 
-1.1593832 

K =2  

0.022 9056 
0.030 5992 
0.028 7292 
0.741 9848 
0.775 2823 
0.937 0825 
0.697 757 1 
0.01 1 2242 
0.015 0142 
0.0144188 
0.036 8470 
0.004 5 143 

4 
I O  
11  
10 
9 

1 1  
11 
1 1  
1 1  
11 
1 1  
9 

n Critical point Critical exponent L 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 - 

0.000 0000 
0.000 0000 
0.347 2804 
0.347 3235 
0.347 4094 
0.347 3958 
0.347 4049 
0.260 5036 
0.347 3633 
0.347 3506 
0.347 3496 
0.347 3483 

- 
0.000 0418 
0.000 3 150 

0.000 0354 
0.000 0394 
0.347 3382 
0.000 0429 
0.000 0190 
0.000 0395 
0.000 0300 

- 

0.000 0000 
0.000 0000 

- 1 . I  54 2270 
-1.161 0528 
-1.167 6784 
-1.165 9049 
-1.167 2672 
-0.869 1550 
-1.1622211 
-1.1603824 
-1.1604947 
- 1 .  I60 0153 

- 
0.005 4374 
0.024 5923 

0.004 1696 
0.005 9761 
1.158 8800 
0.006 4901 
0.003 2035 
0.008 1326 
0.005 7920 

- 

I X  

I X  

2x  
2x  
I X  

5 
4 
4 
4 
8 
6 
7 

Decreasing the estimate of y by around 0.001 then brings it into good agreement with 
the sc estimate, and linear regression adequately takes account of the dependence of 
the estimates of y on the estimates of U,. In this way, we estimate uc= 
0.153 129*0.000 010. 

Analysis of the BCC ( R t )  series as above displays the same dependence on order. 
That is, the exponent estimates decrease as the number of series coefficients used in 
the analysis increases. The last entry using all 16 terms gives v=0.595, and so the 
decreasing trend implies excellent agreement with our earlier quoted estimate, v =  
0.59210.004. Taking the diamond and sc results into account, a sharpening of the 
confidence limits to 10.003 would seem to be acceptable. 

4. Conclusion 

Our results for critical points and critical exponents are summarised in table 4. The 
critical point estimates are believed accurate to within a few parts in the last quoted 
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Table 3. Diamond lattice ( R i )  series. Summary of biased (at 1.0) exponent estimates from 
first- and second-order differential approximants. Table entries are - 1  - 2 w .  

K = l  K =2 

n Critical exponent L n Critical exponent L 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

~~ ~~~ 

-2.193 3674 
-2.191 1632 
-2.191 2702 
-2.190 6014 
-2. I90 9763 
-2.190 1439 

-2.188 2741 
-2.191 2046 
-2.189 2058 
-2.189 6137 
-2.1856371 
-2.185 9705 

0.009 1402 
0.006 7646 
0.015 7813 
0.000 7349 
0.003 9679 
0.000 6538 

0.003 0812 
0.009 6639 
0.001 4958 
0.003 3479 
0.006 1528 
0.000 7 148 

4 
4 

IO 
11 
12 
5 
ox 
2x 
5 
5 
3 x  
5 
3x  

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

-2.194 1835 
- 

-2.187 1552 
-2.192 6328 
-2.192 1337 
-2.189 3255 
-2.190 6224 
-2.190 315 1 
-2.190 2652 
-2.187 4493 
-2.185 4883 
-2.185 9416 

- o x  
- I x  
- o x  
- 1x 
0.0041694 2x 
0.0059837 2 x  
0.0008717 2x 
0.0027715 5 
0.001 7517 3x  
- I x  
- I X  

0.001 3660 3 x  
- I X  

Table 4. Summary of critical point and critical exponent estimates obtained in this work. 
For completeness we also quote results for other lattices treated in previous work. 

Lattice Critical point Exponent y Exponent w 
~~ 

Square 0.379 0523 1.343 751. 0.750 0Of 
Triangular 0.240 919 1.343 75: 0.750 OO? 
Diamond 0.347 36 1.161 *0.003 0.592 * 0.003 
Simple cubic 0.213 496 1.161 iO.001 0.592 i 0.004 
Body-centred cubic 0.153 13 1.162 i 0.002 0.592 2 0.004 
Face-centred cubic$ 0.099 637 1. I63 * 0.002 0.592 

+ Exact value. 
$ Result given in 1. 

digit. The exponent y is entirely consistent with the recent field theoretical results of 
Le Guillou and Zinn-Justin (1985) of y =  1.160*0.004, as well as an analysis by 
Ishinabe (1989) using shorter series. 

The overall estimate of the exponent v = 0.592 * 0.003 is in agreement with earlier 
Monte Carlo work (Rapaport 1985, Madras and Sokal 1988), though it is slightly 
higher than the field theory estimate of Le Guillou and Zinn-Justin of 0.588 f 0.001, a 
result also obtained by Ishinabe recently on the basis of a ratio-type analysis of shorter 
series. The formula of Flory, v = 3 ( d + 2 ) ,  is seen to be exact for d = 1, 2 and 4, but 
not for d =3. As shown by de Gennes (1979), the Flory formula depends on the 
cancellation of two competing approximations. It is remarkable that it is correct for 
three distinct dimensionalities. 

Our second-order differential approximants give no evidence of a confluent singu- 
larity. Other methods we have tried in order to detect confluent singularities are also 
inconsistent. We conclude by remarking that we believe that there has as yet been no 
unequivocal evidence of a universal non-analytic correction-to-scaling exponent for 
the SAW problem in two or three dimensions. As the series are extended, the effect of 
the confluent term in the new coefficients diminishes. Hence, while longer series (or 
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Monte Carlo work on long walks) are desirable to sharpen estimates of the physically 
important leading singularity, they are less obviously useful in detecting confluent 
exponents. Earlier work on this question is reviewed in I. More recent discussion has 
been given by Ishinabe (1989) and  Enting and  Guttmann (1989). 
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